$1 \begin{aligned} & \text { Find the first four terms of the binomial expansion of } \\ & \text { expansion is valid. } \\ & 1-2 x \\ & \text {. State the set of values of } x \text { for which the }\end{aligned}$ expansion is valid.

2 Given the binomial expansion $(1+q x)^{p}=1-x+2 x^{2}+\ldots$, find the values of p and q. Hence state the set of values of x for which the expansion is valid. [6]

3 Find the first three terms in the binomial expansion of $\frac{1}{(3-2 x)^{3}}$ in ascending powers of x. State the set of values of x for which the expansion is valid.

4 Find the first three terms in the binomial expansion of $\frac{1+2 x}{(1-2 x)^{2}}$ in ascending powers of x. State the set of values of x for which the expansion is valid.

5 Show that $(1+2 x)^{\frac{1}{3}}=1+\frac{2}{3} x-\frac{4}{9} x^{2}+\ldots$, and find the next term in the expansion.
State the set of values of x for which the expansion is valid.

6 (i) Find the first three terms in the binomial expansion of $\frac{1}{\sqrt{1-2 x}}$. State the set of values of x for which the expansion is valid.
(ii) Hence find the first three terms in the series expansion of $\frac{1+2 x}{\sqrt{1-2 x}}$.

7 (i) Find the first three non-zero terms of the binomial expansion of $\frac{1}{\sqrt{4-x^{2}}}$ for $|x|<2$. [4]
(ii) Use this result to find an approximation for $\int_{0}^{1} \frac{1}{\sqrt{4-x^{2}}} \mathrm{~d} x$, rounding your answer to
4 significant figures.
(iii) Given that $\int \frac{1}{\sqrt{4-x^{2}}} \mathrm{~d} x=\arcsin \left(\frac{1}{2} x\right)+c$, evaluate $\int_{0}^{1} \frac{1}{\sqrt{4-x^{2}}} \mathrm{~d} x$, rounding your answer to 4 significant figures.

