1 Find the first four terms of the binomial expansion of $\sqrt{1-2x}$. State the set of values of x for which the expansion is valid. [6]

2 Given the binomial expansion $(1 + qx)^p = 1 - x + 2x^2 + \dots$, find the values of p and q. Hence state the set of values of x for which the expansion is valid. [6]

3 Find the first three terms in the binomial expansion of $\frac{1}{(3-2x)^3}$ in ascending powers of x. State the set of values of x for which the expansion is valid. [7]

4 Find the first three terms in the binomial expansion of $\frac{1+2x}{(1-2x)^2}$ in ascending powers of x. State the set of values of x for which the expansion is valid. [7]

5 Show that $(1+2x)^{\frac{1}{3}} = 1 + \frac{2}{3}x - \frac{4}{9}x^2 + \dots$, and find the next term in the expansion.

State the set of values of *x* for which the expansion is valid.

- 6 (i) Find the first three terms in the binomial expansion of $\frac{1}{\sqrt{1-2x}}$. State the set of values of x for which the expansion is valid. [5]
 - (ii) Hence find the first three terms in the series expansion of $\frac{1+2x}{\sqrt{1-2x}}$. [3]

[6]

- 7 (i) Find the first three non-zero terms of the binomial expansion of $\frac{1}{\sqrt{4-x^2}}$ for |x| < 2. [4]
 - (ii) Use this result to find an approximation for $\int_0^1 \frac{1}{\sqrt{4-x^2}} dx$, rounding your answer to 4 significant figures. [2]
 - (iii) Given that $\int \frac{1}{\sqrt{4 x^2}} dx = \arcsin\left(\frac{1}{2}x\right) + c$, evaluate $\int_0^1 \frac{1}{\sqrt{4 x^2}} dx$, rounding your answer to 4 significant figures. [1]